RBE 2001 FINAL PROJECT PRESENTATION

EMILY AUSTIN, MICHAEL BESKID, JONATHAN GONG

STRATEGY AND SYSTEMS

Strategy:

- Start on the 45-degree roof side
- Grab collector from roof and place on staging block
- Pick up new collector and place back onto roof
- Autonomously move to the other side of the field
- Repeat process for 25-degree roof
- Stop after new collector is placed

System:

- Designed a gripper to grab the collector
- Use a four-bar mechanism to lift the collector to/from the roof
- Have a two stage 1:25 transmission to power the four-bar mechanism

DESIGN OVERVIEW

Front View

Side View, Arm Lowered

Side View, Arm Raised

Top View

Front Isometric View

Back Isometric View

Transmission Detail View

LINKAGE SYNTHESIS DESIGN PROCESS

Linkage Synthesis Design Sketch

Fourbar Lift Mechanism Joint Locations

Fourbar Lift Mechanism Link Lengths

Lift Mechanism Gripper Position 1 (0-deg)

Lift Mechanism Gripper Position 2 (45-deg)

Lift Mechanism Gripper Position 3 (25-deg)

PICK-UP AND DEPOSIT OF SOLAR PANELS

45-Degree Roof Pickup Collector

45-Degree Roof Place Collector

25-Degree Roof Pickup Collector

25-Degree Roof Place Collector

Staging Area Pickup Collector

Staging Area Place Collector

MAXIMUM REACH ORIENTATION/CENTER OF MASS

MOTION STUDY

Maximum Torque: 2.63353 in-lbf @ 2.16 seconds

Fourbar Lift Mechanism

0.

6

FORCE ANALYSIS OF FOURBAR LIFTING MECHANISM

Four Bar Lift Mechanism

FBD of Coupler

FBD of Rocker

FBD of Crank

Known Parameters:

$$\begin{split} & W_1 \coloneqq 0.79483 lbf \quad r_1 \coloneqq 1.941 in \quad r_2 \coloneqq 1.576 in \quad r_3 \coloneqq .970 in \quad r_4 \coloneqq .4 \\ & r_5 \coloneqq 6.619 in \quad r_6 \coloneqq 1.137 in \quad r_7 \coloneqq 2.607 in \end{split}$$

Homoson in the second system of the second system in the second system is second system in the second system is second system in the second system is second system in the system in the system is second system in the system in the system is second system in the system in the

From equations of equilibrium we have nine equations with nine unknow

Given

From FBD of Coupler

 $0 = -B_x \cdot r_1 - B_y \cdot r_2 + W_1 \cdot r_3$

 $0 \equiv B_x - A_x$

 $0 = A_y - B_y - W_1$

From FBD of Rocker:

$$\mathbf{B} = -\mathbf{B}_{\mathbf{x}} \cdot \mathbf{r}_4 - \mathbf{B}_{\mathbf{y}} \cdot \mathbf{r}_5$$

 $0 \equiv D_x - B_x$

 $0 \equiv B_y - D_y$

From FBD of Crank:

$$0 = -T_1 + A_x \cdot r_6 + A_y \cdot r_7$$
$$0 = A_x - C_x$$
$$0 = C_y - A_y$$

Mathcad Calculations

3

3

3

$$\begin{array}{l} \begin{array}{c} SA_x\\ SA_y\\ SB_x\\ SB_y\\ SB_y\\ SC_x\\ SC_y\\ SD_x\\ SD_y\\ ST_1 \end{array} := Find (A_x, A_y, B_x, B_y, C_x, C_y, D_x, D_y, T_1) \\ SA_x = 0.42 \, lbf\\ SA_y = 0.77 \, lbf\\ SB_x = 0.42 \, lbf\\ SB_y = -0.03 \, lbf\\ SC_x = 0.42 \, lbf\\ SC_x = 0.42 \, lbf\\ SC_y = 0.77 \, lbf\\ SD_x = 0.42 \, lbf\\ SD_y = -0.03 \, lbf\\ SD_x = 0.42 \, lbf\\ SD_y = -0.03 \, lbf\\ SD_y$$

Gripper Mechanism

FORCE ANALYSIS OF GRIPPER MECHANISM

FBD of Solar Collector

Gripper Mechanism

FBD of Lower Jaw

FBD of Link

FBD of Servo Horn

Known Parameters:									
$W_1 := .35lbf$	r ₁ := 1.25in	r ₂ := 1.86in	r ₃ := .88in	r ₄ :=					
r ₅ := 2.47in	r ₆ := 1.34in	r ₇ := .57in	r ₈ := .49in	r ₉ :=					
Supply initial guesses for unknowns:									
$A_x := 2lbf$	$A_y := 2lbf$	$B_x := 2bf$	$B_y := 2lbf$	C _y := 2lbi					
$D_x := 2lbf$	$D_y := 2lbf$	$C_x := 2lbf$	$T_1 := 2in \cdot lbf$	$F_1 := 1$					
From equations of equilibrium we have nine equations with nine unknow									
Given									
From FBD of Plate									
$0 = F_2 r_1 - W_1 r_2$	2								
$0 = F_2 - F_1 - W$	1								
			N	lathcad Cal					

From FBD of Lower Jaw:

$$0 = A_y \cdot r_3 - A_x \cdot r_4 - F_2 \cdot r_5$$

 $0 = B_x - A_x$ $0 = A_y - B_y - F_2$

From FBD of Link

 $0 = -B_x r_6 - B_y r_7$ $0 = C_x - B_x$ $0 = B_y - C_y$

Mathcad Calculations

From FBD of Servo Hom		$SF_1 = 0.17$ lbf
$0 = -\mathbf{T}_1 - \mathbf{C}_x \cdot \mathbf{r}_8 - \mathbf{C}_y \cdot \mathbf{r}_9$	$\Sigma M_{\mathbf{D}} := 0$	$SF_2 = 0.521bf$
$0 \equiv D_x - C_x$	$\Sigma F_{\infty} := 0$	$SA_x = -0.34$ lbf
$0 = C_y - D_y$	ΣF:= 0	$SA_y = 1.32 lbf$
(SF ₁) SF ₂	~~~~¥	$SB_x = -0.34$ lbf
SA _x		$SB_y = 0.79 lbf$
SA _y		SC _x = -0.34lbf
$\begin{vmatrix} SB_x \\ SB_y \end{vmatrix} := Find(F_1, F_2, A_x, A_y, B_x, B_y, C_x, C_y, D_x, D_y, T_1)$		$SC_v = 0.791bf$
SC _x SC _x		$SD_x = -0.34$ lbf
SD _x		$SD_v = 0.79 lbf$
$\begin{pmatrix} SD_y \\ ST_1 \end{pmatrix}$		$ST_1 = -1.25 \times 10^{-3}$ in lbf

Mathcad Calculations

FORCE ANALYSIS OF GEAR TEETH

Two Stage 1:25 Transmission

ē

Calculating the Force on the gear tooth:

$$\tau_{crank} = r \times F$$
$$F = \frac{\tau_{crank}}{r \cos \theta}$$
$$2.63353 \text{ in} \cdot lbf$$

 $F = \frac{1}{(1.25in)\cos(14.09^\circ)}$

 $F = 2.172 \, lbf$

Calculating Torque on Intermediate Shaft :

$$\tau_{int} = \tau_{crank} \left(\frac{driver}{driven} \right) \left(\frac{1}{efficiency} \right)$$

$$\tau_{int} = (2.63353in \cdot lbf) \left(\frac{12}{60} \right) \left(\frac{1}{0.90} \right)$$

 $\tau_{int} = 0.5852 in \cdot lbf$

Second Stage

Calculating Force on the gear tooth:

 $\tau_{int} = r \times F$ $F = \frac{\tau_{int}}{r \cos \theta}$

 $F = \frac{0.5852 \ in \cdot lbf}{(1.25in)\cos(14.09^{\circ})}$

 $F = 0.483 \, lbf$

Calculating the output torque of the blue motor:

$$\tau_{motor} = \tau_{crank} \left(\frac{drivers}{driven}\right) \left(\frac{1}{efficiency}\right)^{n}$$

$$\tau_{motor} = (2.63353in \cdot lbf) \left(\frac{12}{60}\right) \left(\frac{12}{60}\right) \left(\frac{1}{0.90}\right)^{2}$$

$$\tau_{motor} = 0.13005 in \cdot lbf$$

First Stage

FACTOR OF SAFETY OF GEAR (2ND STAGE)

$$t = \frac{\pi}{2P}$$

$$t = \frac{\pi}{2 \cdot 24} = .06545 \text{ in}$$

$$A = t * b$$

$$A = .06545 \text{ in} \cdot .45 \text{ in} = .02945 \text{ in}^2$$

$$\sigma_{max} = \frac{F}{A}$$

$$\sigma_{max} = \frac{2.172 \text{ lb}f}{.02945 \text{ in}^2} = 73.75212 \text{ psi}$$

$$FoS = \frac{\sigma_y}{\sigma_{max}}$$

$$FoS = \frac{2500 \text{ psi}}{73.75212 \text{ psi}} = 33.90013$$

* t = tooth thickness, b = face width

FACTOR OF SAFETY OF GEAR (1ST STAGE)

$$t = \frac{\pi}{2p}$$

$$t = \frac{\pi}{2 \cdot 24} = .06545 \text{ in}$$

$$A = t * b$$

$$A = .06545 \text{ in} \cdot .45 \text{ in} = .02945 \text{ in}^2$$

$$\sigma_{max} = \frac{F}{A}$$

$$\sigma_{max} = \frac{.483 \text{ lb}f}{.02945 \text{ in}^2} = 16.40068 \text{ psi}$$

$$FoS = \frac{\sigma_y}{\sigma_{max}}$$

$$FoS = \frac{2500 \text{ psi}}{16.40068 \text{ psi}} = 152.4327$$

* t = tooth thickness, b = face width

FOURBAR COMPONENT SPEEDS

🚽 Linkages - Student Edition - by R. L. Norton - Copyright 2017 Release 10.0 Rev 2.0.7 8/13/2017 Print Screen — 🗌 🗙										
Image: mage: mage										
Print 1	Set Angle 🔒	S	et Data 🕞	Functions	Coordinate	System	magnitudes for all l	inke	Defrech	
Every Dec Pics Dec Pics Control Dec Pics										
Current Model Parameters			Input Angle (deg)	Omega2 Mag (rad/sec)	Omega3 Mag (rad/sec)	Omega4 Mag (rad/sec)	w4 / w2 Mag (ratio)	Omega2 Mag		
Fourbar	Value	Unit		180.950	0.377	0.045	0.151	0.402	Max 0.377 rad/sec	
Links	4			181.950	0.377	0.052	0.150	0.397	Min 0.377 rad/sec	
Link 2	2.884	in	·	182.950	0.377	0.059	0.148	0.391	P_P_0000 rad/sec	
Link 3	2.500	in	·	183.950	0.377	0.065	0.145	0.386	F-F 0.000 masses	
Link 4	6.635	in	·	184.950	0.377	0.072	0.143	0.380	Omega3 Mag	
Pivot O4x	5.59	in	·	185.950	0.377	0.079	0.141	0.375	Max 0,184 rad/sec	
Pivot O4v	1.25	in	·	186.950	0.377	0.086	0.139	0.369		
I23-CplrPt	0.000	in	·	187.950	0.377	0.093	0.137	0.363	Min 0.045 rad/sec	
CplrPtAng3	0.00	deg	·	188.950	0.377	0.100	0.135	0.357	P - P 0.139 rad/sec	
		-	l	189.950	0.377	0.107	0.132	0.351		
			190.950	0.377	0.114	0.130	0.345	Omega4 Mag		
			II	191.950	0.377	0.122	0.128	0.339	Max 0.151 rad/sec	
		II	192.950	0.377	0.129	0.126	0.333	Min 0,107 rad/sec		
		II	193.950	0.377	0.136	0.123	0.327			
			II	194.950	0.377	0.143	0.121	0.321	P - P 0.044 rad/sec	
			J	195.950	0.377	0.150	0.119	0.314	w4 / w2 Mag	
Initial	Value	llož	11	196.950	0.377	0.157	0.116	0.308		
Conditions	value			197.950	0.377	0.164	0.114	0.302	Max 0.402 Patto	
Start	181.0	deg		198.950	0.377	0.171	0.112	0.296	Min 0.284 ratio	
End	201.0	deg		199.950	0.377	0.178	0.109	0.290	P - P 0,117 ratio	
Delta	1.0	deg		200.950	0.377	0.184	0.107	0.284		
Omega2	0.4	rad/s								
						Michael Beskid				
						Design No. 1				
						03-11-2021				
					at 19:05:07					
									File: Model_1	

Fourbar Component Speed Results

Angular Speed of Crank: 0.377 rad/s Angular Speed of Coupler: 0.144 rad/s Angular Speed of Rocker: 0.130 rad/s

SUMMARY OF SENSORS

Reflective Sensor Array:

- Detect light levels to follow the black lines on the field
- Keep robot on straight course to target with proportional control
- 8 IR LED/phototransistor pairs (using 2 for robot)
- Optimal sensing distance: 0.125"

Ultrasonic Sensor:

- Detect the distance the robot is away from the roof and the staging block
- Position the robot optimally for grabbing and placing the solar collectors
- Range: 2cm 4m
- Accuracy: ~0.5cm

IR Sensor:

- Detect input signals from the IR remote
- Receive user commands to proceed
- Respond to emergency stop signal

- Keep count of the motor rotations
- Control drive motors to drive for target distance
- Measure arm position for PID control algorithm
- Drive motors: 1440 counts/revolution
- Blue motor: 540 counts/revolution

BLUE MOTOR CURRENT REQUIREMENT

$$I = \left(\frac{I_{stall} - I_{noload}}{T_{stall}}\right) \cdot T + I_{noload}$$

$$I = \left(\frac{0.32 A - 0.04 A}{.092 N \cdot m \cdot \left(\frac{3.281 f t}{1m}\right) \cdot \left(\frac{12 i n}{1 f t}\right) \cdot \left(\frac{1 l b f}{4.448 N}\right)}\right) \cdot (0.13005 i n \cdot l b f) + 0.04 A$$

I = .08471A

PROGRAM OVERVIEW

PROGRAM FLOWCHART

Button presse	Button pressed after	Button pressed after	Button pressed after
	collector is grabbed	collector is placed	collector is placed
Start	Grab	Remove	Place
	Collector	Collector	Collector
	Last collector is placed	Black line detected	

Start:

- Initialize sensors and systems
- Pressing IR remote button switches to Grab Collector

Grab Collector:

- Drive up to the roof while line following and using ultrasonic sensor for distance
- Check boolean to know which position to lift arm to
- Lifts arm to that position
- Grab the collector
- Switch to Remove Collector when IR remote is pressed

Remove Collector:

- Remove the collector from the roof
- 180 degree turn and drive to black line intersection
- Check boolean to know which way to turn
- Drive to staging block while line following and using ultrasonic sensor for distance
- Place collector on staging block
- Switch to Place Collector when IR remote is pressed

Place Collector:

- Picks up new collector when IR remote is pressed
- 180 turn and drive to black line intersection
- Check boolean to know which way to turn
- Drive up to roof while line following and using ultrasonic sensor for distance
- Lift arm to the roof position
- Place collector
- Toggle Boolean value to indicate task completed
- Switch to Navigate when IR remote is pressed

Navigate:

- Open gripper mouth
- Drive back a certain distance
- Check boolean value to see if both collectors have been placed
- If true, switch to Start
- If false, drive to the other side of the field by making a series of turns using the drive motor encoders, and find black line
- Switch to Grab collector once on the other side of the field

ASSEMBLY DRAWING/BOM

ITEM NO.	PART NUMBER	QTY.	UNIT COST	EXT. COST	MATERIAL	UNIT WEIGHT (LBS)	EXT. WEIGHT (LBS)
1	LONG_LINK_L	1	\$0.79	\$0.79	PLA	0.075	0.07
2	CHASSIS_WALL_L	1	\$2.27	\$2.27	PLA	0.202	0.20
3	CHASSIS_WALL_R	1	\$2.16	\$2.16	PLA	0.195	0.20
4	BLUE_MOTOR	1	\$5.95	\$5.95	Copper	0.707	0.71
5	PINION	1	\$0.44	\$0.44	PLA	0.00386867	0.00
6	DRIVE STEEL SHAFT	3	\$4.32	\$12.96	Cast Carbon Steel	0.017	0.05
7	SET SCREW SHAFT COLLA	R 6	\$1.23	\$7.38	Plain Carbon Steel	0.01	0.06
8	FLANGED SLEEVE BEARIN	G 10	\$0.79	\$7.90	Cast Carbon Steel	0.003	0.03
9	12T 60T GEAR	2	\$1.13	\$2.26	PLA	0.100	0.20
10	SHORT_LINK_L	1	\$1.18	\$1.18	PLA	0.10403132	0.10
11	ARM_BRACE_2	2	\$0.11	\$0.22	PLA	0.011	0.02
12	HEX DRIVE SCREW	16	\$.08	\$1.28	18-8 Stainless Steel	0.0014	0.02
13	MOTOR_BRACKET_L	1	\$0.11	\$0.11	PLA	0.013	0.01
14	MOTOR_BRACKET_R	1	\$0.11	\$0.11	PLA	0.010	0.01
15	LONG_SCREW	2	\$0.10	\$0.20	Cast Carbon Steel	0.002	0.00
16	HEX_NUT	2	\$0.04	\$0.08	Cast Carbon Steel	0.000	0.00
17	SHORT_LINK_R	1	\$1.18	\$1.18	PLA	0.10403064	0.10
18	QUARTER INCH FLANGE BEARING	8	\$0.81	\$6.48	Cast Carbon Steel	0.006	0.05
19	LONG_LINK_R	1	\$0.79	\$0.79	PLA	0.075	0.07
20	BINDING_BARREL	4	\$2.52	\$10.08	Cast Carbon Steel	0.017	0.07
21	GEAR_BRACE	2	\$0.11	\$0.22	PLA	0.012	0.02
22	GRIPPER	1	\$25.00	\$25.00	PLA, Cast Carbon Steel	0.44	0.44
				ASSEMBLY COST \$89.04			ASSEMBLY WEIGHT 2.43 (LBS)
TEAM 3		SCALE:	1:1	FOURBAR LIFT BOM		MARCH 12 2021	

